Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
1.
Dis Aquat Organ ; 158: 65-74, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661138

RESUMO

Red sea bream iridovirus (RSIV) causes substantial economic damage to aquaculture. In the present study, RSIV in wild fish near aquaculture installations was surveyed to evaluate the risk of wild fish being an infection source for RSIV outbreaks in cultured fish. In total, 1102 wild fish, consisting of 44 species, were captured from 2 aquaculture areas in western Japan using fishing, gill nets, and fishing baskets between 2019 and 2022. Eleven fish from 7 species were confirmed to harbor the RSIV genome using a probe-based real-time PCR assay. The mean viral load of the RSIV-positive wild fish was 101.1 ± 0.4 copies mg-1 DNA, which was significantly lower than that of seemingly healthy red sea bream Pagrus major in a net pen during an RSIV outbreak (103.3 ± 1.5 copies mg-1 DNA) that occurred in 2021. Sequencing analysis of a partial region of the major capsid protein gene demonstrated that the RSIV genome detected in the wild fish was identical to that of the diseased fish in a fish farm located in the same area in which the wild fish were captured. Based on the diagnostic records of RSIV in the sampled area, the RSIV-infected wild fish appeared during or after the RSIV outbreak in cultured fish, suggesting that RSIV detected in wild fish was derived from the RSIV outbreak in cultured fish. Therefore, wild fish populations near aquaculture installations may not be a significant risk factor for RSIV outbreaks in cultured fish.


Assuntos
Aquicultura , Infecções por Vírus de DNA , Surtos de Doenças , Doenças dos Peixes , Iridovirus , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/epidemiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Surtos de Doenças/veterinária , Iridovirus/genética , Dourada/virologia , Peixes , Medição de Risco , Japão/epidemiologia , Animais Selvagens
2.
Fish Shellfish Immunol ; 146: 109424, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311091

RESUMO

The suppressor of cytokine signaling (SOCS) proteins family have twelve members including eight known mammalian SOCS members (CISH, SOCS1-7) and four new discovery members (SOCS3b, SOCS5b, SOCS8 and SOCS9) that is regarded as a classic feedback inhibitor of cytokine signaling. Although the function of the mammalian SOCS proteins have been well studied, little is known about the roles of SOCS in fish during viral infection. In this study, the molecular characteristics of SOCS9 from orange-spotted grouper (Epinephelus coioides, EcSOCS9) is investigated. The EcSOCS9 protein encoded 543 amino acids with typical SH2 (389-475aa) and SOCS_box (491-527aa), sharing high identities with reported fish SOCS9. EcSOCS9 was expressed in all detected tissues and highly expressed in kidney. After red-spotted grouper nervous necrosis virus (RGNNV) infection, the expression of EcSOCS9 was significantly induced in vitro. Furthermore, EcSOCS9 overexpression enhanced RGNNV replication, promoted virus-induced mitophagy that evidenced by the increased level of LC3-Ⅱ, BCL2, PGAM5 and decreased level of BNIP3 and FUNDC1. Besides, EcSOCS9 overexpression suppressed the expression levels of ATP6, CYB, ND4, ATP level and induced ROS level. The expression levels of interferon (IFN) related factors (IRF1, IRF3, IRF7, P53), inflammatory factors (IL1-ß, IL8, TLR2, TNF-α) and IFN-3, ISRE, NF-κB, AP1 activities were also reduced by overexpressing EcSOCS9. These date suggests that EcSOCS9 impacts RGNNV infection through modulating mitophagy, regulating the expression levels of IFN- related and inflammatory factors, which will expand our understanding of fish immune responses during viral infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Viroses , Animais , Imunidade Inata/genética , Regulação da Expressão Gênica , Sequência de Aminoácidos , Alinhamento de Sequência , Interferons/metabolismo , Proteínas de Peixes/química , Nodaviridae/fisiologia , Infecções por Vírus de DNA/veterinária , Mamíferos/metabolismo
3.
Commun Biol ; 7(1): 237, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413759

RESUMO

Iridoviruses are nucleocytoplasmic large dsDNA viruses that infect invertebrates and ectothermic vertebrates. The hypermethylated genome of vertebrate iridoviruses is unique among animal viruses. However, the map and function of iridovirus genomic methylation remain unknown. Herein, the methylated genome of Infectious spleen and kidney necrosis virus (ISKNV, a fish iridovirus), and its role in viral infection, are investigated. The methylation level of ISKNV is 23.44%. The hypermethylated genome is essential for ISKNV amplification, but there is no correlation between hypermethylation and viral gene expression. The hypomethylated ISKNV (obtained via 5-Azacytidine) activates a strong immunoreaction in vitro and reduces its pathogenicity in vivo. The unmethylated viral DNA can induce a stronger immunoreaction in vitro, whereas inactivated hypomethylated ISKNV can induce a stronger immunoreaction in vivo, suggesting ISKNV may evade from immune system by increasing its genome methylation level. Our work provides new insights into the role of genome methylation in viral infection.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Viroses , Animais , Iridovirus/genética , Iridoviridae/genética , Infecções por Vírus de DNA/veterinária , Peixes
4.
Braz J Microbiol ; 55(1): 981-989, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286944

RESUMO

Torque teno sus virus k2a (TTSuVk2a) is a member of the family Anelloviridae that can establish persistent infections in both domestic pigs and wild boars. Its association with diseases has not been precisely elucidated, and it is often considered only as a commensal virus. This infectious agent has been reported in herds throughout the world. In this study, we investigated the detection rate and diversity of TTSuVk2a in free-living wild boars from northeastern Patagonia, Argentina. Total DNA was extracted from tonsil samples of 50 animals, nested PCR assays were carried out, and infection was verified in 60% of the cases. Sequence analysis of the viral non-coding region revealed distinct phylogenetic groups. These clusters showed contrasting patterns of spatial distribution, which presented statistically significant differences when evaluating spatial aggregation. In turn, the sequences were compared with those available in the database to find that the clusters were distinguished by having similarity with TTSuVk2a variants of different geographic origin. The results suggested that Patagonian wild boar populations are bearers of diverse viral strains of Asian, European, and South American provenance.


Assuntos
Anelloviridae , Infecções por Vírus de DNA , Doenças dos Suínos , Torque teno virus , Suínos , Animais , Sus scrofa , Filogenia , Argentina , Doenças dos Suínos/epidemiologia , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Torque teno virus/genética
5.
Fish Shellfish Immunol ; 144: 109218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977543

RESUMO

Grouper is one of the most important and valuable mariculture fish in China, with a high economic value. As the production of grouper has increased, massive outbreaks of epidemic diseases have limited the development of the industry. Singapore grouper iridovirus (SGIV) is one of the most serious infectious viral pathogens and has caused huge economic losses to grouper farming worldwide due to its rapid spread and high lethality. To find new strategies for the effective prevention and control of SGIV, we constructed two chimeric DNA vaccines using Lysosome-associated membrane protein 1 (LAMP1) fused with major capsid proteins (MCP) against SGIV. In addition, we evaluated the immune protective effects of vaccines including pcDNA3.1-3HA, pcDNA3.1-MCP, pcDNA3.1-LAMP1, chimeric DNA vaccine pcDNA3.1-MLAMP and pcDNA3.1-LAMCP by intramuscular injection. Our results showed that compared with groups injected with PBS, pcDNA3.1-3HA, pcDNA3.1-LAMP1 or pcDNA3.1-MCP, the antibody titer significantly increased in the chimeric vaccine groups. Moreover, the mRNA levels of immune-related factors in groupers, including IRF3, MHC-I, TNF-α, and CD8, showed the same trend. However, MHC-II and CD4 were significantly increased only in the chimeric vaccine groups. After 28 days of vaccination, groupers were challenged with SGIV, and mortality was documented for each group within 14 days. The data showed that two chimeric DNA vaccines provided 87 % and 91 % immune protection for groupers which were significantly higher than the 52 % protection rate of pcDNA3.1-MCP group, indicating that both forms of LAMP1 chimeric vaccines possessed higher immune protection against SGIV, providing the theoretical foundation for the creation of novel DNA vaccines for fish.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Vacinas de DNA , Animais , Singapura , Fatores de Transcrição , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/genética , Proteínas de Peixes/genética
6.
J Wildl Dis ; 60(1): 151-163, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921651

RESUMO

Frog virus 3 (FV3) and related ranaviruses are emerging infectious disease threats to ectothermic vertebrate species globally. Although the impact of these viruses on amphibian health is relatively well studied, less is understood about their effects on reptile health. We report two cases of FV3 infection, 11 mo apart, in three-toed box turtles (Terrapene mexicana triunguis) from a wildlife rehabilitation center. Case 1 had upper respiratory signs upon intake but had no clinical signs at the time of euthanasia 1 mo later. Case 2 presented for vehicular trauma, had ulcerative pharyngitis and glossitis, and died overnight. In case 1, we detected FV3 nucleic acid with qPCR in oral swabs, kidney, liver, spleen, and tongue. In case 2, we detected FV3 in an oral swab, an oral plaque, heart, kidney, lung, liver, spleen, and tongue. We also detected FV3 nucleic acid with in situ hybridization for case 2. For both cases, FV3 was isolated in cell culture and identified with DNA sequencing. Histopathologic examination of postmortem tissue from case 1 was unremarkable, whereas acute hemorrhagic pneumonia and splenic necrosis were noted in case 2. The difference in clinical signs between the two cases may have been due to differences in the temporal course of FV3 disease at the time of necropsy. Failure to detect this infection previously in Missouri reptiles may be due to lack of surveillance, although cases may also represent a novel spillover to box turtles in Missouri. Our findings reiterate previous suggestions that the range of FV3 infection may be greater than previously documented and that infection may occur in host species yet to be tested.


Assuntos
Infecções por Vírus de DNA , Ácidos Nucleicos , Ranavirus , Tartarugas , Animais , Missouri/epidemiologia , Animais Selvagens , Infecções por Vírus de DNA/veterinária
7.
Virus Res ; 339: 199278, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984754

RESUMO

Rock bream iridovirus (RBIV), belonging to Megalocytivirus, causes severe mortality in rock bream. Almost all deaths associated with RBIV are accompanied by splenic enlargement and anemia. Although red blood cells (RBCs) are involved in the immune response against viral infections, their involvement in rock bream has not yet been studied in terms of the immune response against RBIV. In this study, the viral replication patterns, blood characteristics and anemia-related factors were evaluated in rock bream post RBIV infection. The virus-infected RBCs of rock bream demonstrated similarities in the expression levels of hemoglobins (HGB) (α and ß), cytokine-dependent hematopoietic cell linker (CLNK) and hematopoietic transcription factor GATA (GATA), with significantly decreasing levels from 4 days post infection (dpi) to 17 (dpi), when the viral replication was at its peak. This suggests that the expression of blood-related genes is inadequate for HGB synthesis and RBC production, thereby causing anemia leading to death. Moreover, the levels of complete blood cell count (CBC) indicators, such as RBCs, HGB and hematocrit (HCT), significantly decreased from 10 to 17 dpi. This phenomenon suggests that blood-related gene expression and/or RBC-, HGB- and HCT-related levels are critical factors in RBIV-induced anemia and disease progression. These results highlight the significance of blood-mediated immune responses against RBIV infection in rock bream. Understanding blood-related gene levels to identify blood-related immune response interactions in rock bream will be useful for development of future strategies in controlling RBIV diseases in rock bream.


Assuntos
Anemia , Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Animais , Iridovirus/genética , Infecções por Vírus de DNA/veterinária , Iridoviridae/fisiologia , Eritrócitos/metabolismo , Filogenia
8.
Viruses ; 15(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005914

RESUMO

Singapore grouper iridovirus (SGIV) is a virus with high fatality rate in the grouper culture industry. The outbreak of SGIV is often accompanied by a large number of grouper deaths, which has a great impact on the economy. Therefore, it is of great significance to find effective drugs against SGIV. It has been reported that edaravone is a broad-spectrum antiviral drug, most widely used clinically in recent years, but no report has been found exploring the effect of edaravone on SGIV infections. In this study, we evaluated the antiviral effect of edaravone against SGIV, and the anti-SGIV mechanism of edaravone was also explored. It was found that the safe concentration of edaravone on grouper spleen (GS) cells was 50 µg/mL, and it possessed antiviral activity against SGIV infection in a dose-dependent manner. Furthermore, edaravone could significantly disrupt SGIV particles and interference with SGIV binding to host cells, as well as SGIV replication in host cells. However, edaravone was not effective during the SGIV invasion into host cells. This study was the first time that it was determined that edaravone could exert antiviral effects in response to SGIV infection by directly interfering with the processes of SGIV infecting cells, aiming to provide a theoretical basis for the control of grouper virus disease.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Bass/metabolismo , Edaravone/farmacologia , Ranavirus/fisiologia , Antivirais/farmacologia , Doenças dos Peixes/tratamento farmacológico , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/metabolismo
9.
Fish Shellfish Immunol ; 143: 109213, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949380

RESUMO

Largemouth bass ranavirus (LMBV) is a highly destructive pathogen that causes significant mortality rates among largemouth bass populations. Unfortunately, there is a dearth of drug development efforts specifically aimed at treating LMBV. To address this, our study sought to investigate the potential effectiveness of incorporating varying doses of VD3 into the diet as a treatment for LMBV. Through qRT-PCR and semi-qPCR, we observed significant suppression and clearance of LMBV pathogens in largemouth bass fed with 15000 IU/Kg and 20000 IU/Kg of VD3 within 14 days. In addition, VD3 treatment significantly increased the expression levels of key immune-related genes such as IL-1ß, IFN-γ, Mx, and IgM. Encouragingly, we observed that VD3 significantly increased antioxidant and immune activities such as TSOD, TAOC and C3 in serum and maintained total protein levels. Additionally, tissue pathology sections highlighted a dose-dependent relationship between VD3 supplementation and tissue damage, with the 15000 IU and 20000 IU groups exhibiting minimal damage. In conclusion, a reasonable concentration of VD3 effectively reduced LMBV replication and tissue damages, while improved immune-related genes expression and serum biochemical indices. These findings declare the considerable therapeutic potential of VD3 supplementation for combating LMBV disease and provide an alternative treatment option for fish farming.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Colecalciferol/farmacologia , Infecções por Vírus de DNA/veterinária
10.
Front Immunol ; 14: 1268851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868974

RESUMO

Lymphocystis disease is frequently prevalent and transmissible in various teleost species worldwide due to lymphocystis disease virus (LCDV) infection, causing unsightly growths of benign lymphocystis nodules in fish and resulting in huge economic losses to aquaculture industry. However, the molecular mechanism of lymphocystis formation is unclear. In this study, LCDV was firstly detected in naturally infected flounder (Paralichthys olivaceus) by PCR, histopathological, and immunological techniques. To further understand lymphocystis formation, transcriptome sequencing of skin nodule tissue was performed by using healthy flounder skin as a control. In total, RNA-seq produced 99.36%-99.71% clean reads of raw reads, of which 91.11%-92.89% reads were successfully matched to the flounder genome. The transcriptome data showed good reproducibility between samples, with 3781 up-regulated and 2280 down-regulated differentially expressed genes. GSEA analysis revealed activation of Wnt signaling pathway, Hedgehog signaling pathway, Cell cycle, and Basal cell carcinoma associated with nodule formation. These pathways were analyzed to interact with multiple viral infection and tumor formation pathways. Heat map and protein interaction analysis revealed that these pathways regulated the expression of cell cycle-related genes such as ccnd1 and ccnd2 through key genes including ctnnb1, lef1, tcf3, gli2, and gli3 to promote cell proliferation. Additionally, cGMP-PKG signaling pathway, Calcium signaling pathway, ECM-receptor interaction, and Cytokine-cytokine receptor interaction associated with nodule formation were significantly down-regulated. Among these pathways, tnfsf12, tnfrsf1a, and tnfrsf19, associated with pro-apoptosis, and vdac2, which promotes viral replication by inhibiting apoptosis, were significantly up-regulated. Visual analysis revealed significant down-regulation of cytc, which expresses the pro-apoptotic protein cytochrome C, as well as phb and phb2, which have anti-tumor activity, however, casp3 was significantly up-regulated. Moreover, bcl9, bcl11a, and bcl-xl, which promote cell proliferation and inhibit apoptosis, were significantly upregulated, as were fgfr1, fgfr2, and fgfr3, which are related to tumor formation. Furthermore, RNA-seq data were validated by qRT-PCR, and LCDV copy numbers and expression patterns of focused genes in various tissues were also investigated. These results clarified the pathways and differentially expressed genes associated with lymphocystis nodule development caused by LCDV infection in flounder for the first time, providing a new breakthrough in molecular mechanisms of lymphocystis formation in fish.


Assuntos
Infecções por Vírus de DNA , Linguado , Iridoviridae , Animais , Linguado/genética , Proteínas Hedgehog , Reprodutibilidade dos Testes , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/metabolismo , Perfilação da Expressão Gênica , Iridoviridae/fisiologia
11.
J Fish Dis ; 46(12): 1403-1411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37697626

RESUMO

This study investigated the kinetics of red sea bream iridovirus and host gene expression during infection in rock bream (Oplegnathus fasciatus), a species highly sensitive to the virus. After intraperitoneal injection of the viral solution at 104 TCID50/fish, the viral genome copy number in the spleen was 104.7 ± 0.2 and 105.9 ± 0.4 copies/µg DNA at 3 and 5 days post-injection (dpi), respectively. Using transcriptomic analyses via MiSeq, viral gene transcripts were detected at 3 and 5 dpi. Six genes including RING-finger domain-containing protein and laminin-type epidermal growth factor-like domain genes were significantly expressed at 5 dpi. Further, 334 host genes were differentially expressed compared with those before infection. Genes were clustered into four groups based on their expression profiles. Interferon-stimulated genes were more prevalent in groups showing upregulation at 5 dpi and 3 and 5 dpi. In contrast, the group showing downregulation at 3 dpi included inflammation-related genes, such as granzyme and eosinophil peroxidase genes. Downregulation of certain inflammation-related genes may contribute to the susceptibility of this fish to the virus.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Perciformes , Dourada , Animais , Iridoviridae/fisiologia , Baço , Perciformes/genética , Inflamação , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/genética , Filogenia
12.
Fish Shellfish Immunol ; 141: 109034, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640124

RESUMO

The spotted knifejaw (Oplegnathus punctatus) has recently emerged as a highly economically significant farmed fish in China. However, due to increasing environmental pollution and breeding density, a range of infectious diseases, including the iridovirus pathogen, have begun to spread widely. In this study, we isolated and identified a strain of Megalocytivirus, SKIV-TJ, from cultured spotted knifejaw in Tianjin, China. We observed significant cytopathic effects (CPE) in SKIV-TJ-infected spotted knifejaw brain (SKB) cells, and electron microscopy showed numerous virus particles in the cytoplasm of SKB cells 6 days post-infection. The annotated complete genome of SKIV-TJ (GenBank accession number ON075463) contained 112,489 bp and 132 open reading frames. Based on the multigene association evolutionary tree using 26 iridovirus core genes, SKIV-TJ was found to be most closely related to Rock bream iridovirus (RBIV). Cumulative mortality of spotted knifejaw infected with SKIV-TJ reached 100% by day 9. A transcriptomic analysis were conducted and a total of 5517 differentially expressed genes were identified, including 2757 upregulated genes and 2760 downregulated genes. The upregulated genes were associated with viral infection and immune signaling pathways. Our findings provide a valuable genetic resource and a deeper understanding of the immune response to SKIV infection in spotted knifejaw.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Iridovirus , Perciformes , Animais , Virulência , Perciformes/genética , Peixes/genética , Infecções por Vírus de DNA/veterinária
13.
Arch Virol ; 168(8): 208, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462757

RESUMO

Wild boars can act as a reservoir of pathogenic viruses that affect the pig industry. Here, we assessed the presence of porcine circovirus 2, porcine parvovirus 1, and torque teno sus virus k2a in wild boars in northeastern Patagonia (Argentina). Total DNA was extracted from the tonsils of 27 animals (collected between early 2016 and mid-2019) and used to prepare sample pools, which were subjected to viral detection through two-round PCR assays. Sequencing of the amplification products and phylogenetic analysis confirmed the occurrence of all of the aforementioned infectious agents.


Assuntos
Anelloviridae , Circovirus , Infecções por Vírus de DNA , Parvovirus Suíno , Doenças dos Suínos , Torque teno virus , Suínos , Animais , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Circovirus/genética , Parvovirus Suíno/genética , Doenças dos Suínos/epidemiologia , Filogenia , Argentina/epidemiologia , Torque teno virus/genética , Sus scrofa
14.
J Virol ; 97(6): e0049523, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289063

RESUMO

Viral diseases are a significant risk to the aquaculture industry. Transient receptor potential vanilloid 4 (TRPV4) has been reported to be involved in regulating viral activity in mammals, but its regulatory effect on viruses in teleost fish remains unknown. Here, the role of the TRPV4-DEAD box RNA helicase 1 (DDX1) axis in viral infection was investigated in mandarin fish (Siniperca chuatsi). Our results showed that TRPV4 activation mediates Ca2+ influx and facilitates infectious spleen and kidney necrosis virus (ISKNV) replication, whereas this promotion was nearly eliminated by an M709D mutation in TRPV4, a channel Ca2+ permeability mutant. The concentration of cellular Ca2+ increased during ISKNV infection, and Ca2+ was critical for viral replication. TRPV4 interacted with DDX1, and the interaction was mediated primarily by the N-terminal domain (NTD) of TRPV4 and the C-terminal domain (CTD) of DDX1. This interaction was attenuated by TRPV4 activation, thereby enhancing ISKNV replication. DDX1 could bind to viral mRNAs and facilitate ISKNV replication, which required the ATPase/helicase activity of DDX1. Furthermore, the TRPV4-DDX1 axis was verified to regulate herpes simplex virus 1 replication in mammalian cells. These results suggested that the TRPV4-DDX1 axis plays an important role in viral replication. Our work provides a novel molecular mechanism for host involvement in viral regulation, which would be of benefit for new insights into the prevention and control of aquaculture diseases. IMPORTANCE In 2020, global aquaculture production reached a record of 122.6 million tons, with a total value of $281.5 billion. Meanwhile, frequent outbreaks of viral diseases have occurred in aquaculture, and about 10% of farmed aquatic animal production has been lost to infectious diseases, resulting in more than $10 billion in economic losses every year. Therefore, an understanding of the potential molecular mechanism of how aquatic organisms respond to and regulate viral replication is of great significance. Our study suggested that TRPV4 enables Ca2+ influx and interactions with DDX1 to collectively promote ISKNV replication, providing novel insights into the roles of the TRPV4-DDX1 axis in regulating the proviral effect of DDX1. This advances our understanding of viral disease outbreaks and would be of benefit for studies on preventing aquatic viral diseases.


Assuntos
RNA Helicases DEAD-box , Infecções por Vírus de DNA , Iridovirus , Canais de Cátion TRPV , Replicação Viral , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Peixes , Iridovirus/fisiologia , Canais de Cátion TRPV/genética
15.
Fish Shellfish Immunol ; 138: 108860, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257567

RESUMO

Disease caused by Singapore grouper iridovirus (SGIV) results in major economic losses in the global grouper aquaculture industry. Vaccination is considered to be the most effective way to protect grouper from SGIV. In this study, the spores of Bacillus subtilis (B.subtilis) WB600 were utilized as the vehicle that the VP19 protein was displayed on the spores surface. To further investigate the effect of oral vaccination, the grouper were orally immunized with B.s-CotC-19 spores. After challenged, the survival rate of grouper orally vaccinated with B.s-CotC-19 spores was 34.5% and the relative percent survival (RPS) was 28.7% compared to the PBS group. Moreover, the viral load in the tissues of the B.s-CotC-19 group was significantly lower than that of the PBS group. The histopathological sections of head kidney and liver tissue from the B.s-CotC-19 group showed significantly less histopathology compared to the PBS group. In addition, the specific IgM levels in serum in the B.s-CotC-19 group was higher than those in the PBS group. In the hindgut tissue, the immune-related gene expression detected by quantitative real-time PCR (qRT-PCR) exhibited an increasing trend in different degrees in the B.s-CotC-19 group, suggesting that the innate and adaptive immune responses were activated. These results indicated that the oral administration of recombinant B.subtilis spores was effective for preventing SGIV infection. This study provided a feasible strategy for the controlling of fish virus diseases.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Iridovirus/fisiologia , Bacillus subtilis/genética , Singapura , Esporos Bacterianos/genética , Ranavirus/fisiologia , Vacinação , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/veterinária
16.
Viruses ; 15(4)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112945

RESUMO

Tilapia farming is one of the most important sectors in aquaculture worldwide and of major importance to global food security. Infectious spleen and kidney necrosis virus (ISKNV) has been identified as an agent of high morbidity and mortality, threatening tilapia aquaculture. ISKNV was detected in Lake Volta, Ghana, in September 2018 and spread rapidly, with mortality rates between 60 and 90% and losses of more than 10 tonnes of fish per day. Understanding the spread and evolution of viral pathogens is important for control strategies. Here, we developed a tiled-PCR sequencing approach for the whole-genome sequencing of ISKNV, using long read sequencing to enable field-based, real-time genomic surveillance. This work represents the first use of tiled-PCR for whole genome recovery of viruses in aquaculture, with the longest genome target (>110 kb dsDNA) to date. Our protocol was applied to field samples collected from the ISKNV outbreaks from four intensive tilapia cage culture systems across Lake Volta, between October 2018 and May 2022. Despite the low mutation rate of dsDNA viruses, 20 single nucleotide polymorphisms accumulated during the sampling period. Droplet digital PCR identified a minimum requirement of template in a sample to recover 50% of an ISKNV genome at 275 femtograms (2410 viral templates per 5 µL sequencing reaction). Overall, tiled-PCR sequencing of ISKNV provides an informative tool to assist in disease control in aquaculture.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Tilápia , Animais , Iridoviridae/genética , Reação em Cadeia da Polimerase Multiplex , Infecções por Vírus de DNA/veterinária
18.
Viruses ; 15(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992326

RESUMO

Ranavirus is a large nucleocytoplasmic DNA virus. Chinese giant salamander iridovirus (CGSIV) belongs to the ranavirus genus, and its replication involves a series of essential viral genes. Viral PCNA is a gene closely associated with viral replication. CGSIV-025L also encodes PCNA-like genes. We have described the function of CGSIV-025L in virus replication. The promoter of CGSIV-025L is activated during viral infection, and it is an early (E) gene that can be effectively transcribed after viral infection. CGSIV-025L overexpression promoted viral replication and viral DNA replication. siRNA interfered with CGSIV-025L expression and attenuated viral replication and viral DNA replication. The Δ025L-CGSIV strain with the deletion of CGSIV-025L could not replicate normally and could be rescued by the replenishment of 025L. CGSIV-025L was proven to be an essential gene for CGSIV by overexpression, interference, and deletion mutation experiments. CGSIV-025L was found to interact with CGSIV-062L by yeast two-hybrid, CoIP, and GST pulldown. Thus, the current study demonstrated that CGSIV-025L is an essential gene of CGSIV, which may be involved in viral infection by participating in viral DNA replication and interacting with replication-related proteins.


Assuntos
Infecções por Vírus de DNA , Iridovirus , Ranavirus , Animais , Iridovirus/genética , Genes Essenciais , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/genética , DNA Viral/genética , Infecções por Vírus de DNA/veterinária , Replicação Viral , Ranavirus/genética , Genes Virais , Urodelos/genética
19.
J Fish Dis ; 46(7): 767-777, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36966380

RESUMO

Cells are important in the study of virus isolation and identification, viral pathogenic mechanisms and antiviral immunity. The spotted knifejaw (Oplegnathus punctatus) is a significant farmed fish in China that has been greatly affected by diseases in recent years. In this study, a new cell line derived from the spotted knifejaw brain (SKB) was established and characterized. SKB cells multiplied well in Leibovitz's L-15 medium supplemented with 10% fetal bovine serum at 28°C. Chromosome analysis revealed that modal chromosome number was 48 for SKB. SKB cells exhibit susceptibility to several fish viruses, such as a largemouth bass virus, red grouper nervous necrosis virus (RGNNV), infectious spleen and kidney necrosis virus (ISKNV), Singapore grouper iridovirus (SGIV) and spotted knifejaw iridovirus isolate (SKIV-TJ), as shown by cytopathic effect and increased viral titers. Electron microscopy results showed that the cytoplasm contained a large number of vacuoles, and many virus particles existed at the edge of the vacuoles in RGNNV-infected cells and numerous viral particles were scattered throughout the cytoplasm in both ISKNV- and SKIV-TJ-infected cells. These results suggest that SKB is an ideal tool for studying host-virus interactions and potential vaccine development.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Animais , Encéfalo , Linhagem Celular , Proteínas de Peixes/genética , Infecções por Vírus de DNA/veterinária
20.
Fish Shellfish Immunol ; 135: 108641, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36858328

RESUMO

The largemouth bass virus (LMBV) isolate of Santee-Cooper ranavirus showed evidence of widespread infection in adult fish, but disease presentation caused by different viral strains exhibited considerable difference. In this study, a highly pathogenic LMBV-like resembling Santee-Cooper ranavirus was isolated and identified from juvenile largemouth bass. The pathogenicity and dynamic distribution of LMBV-like strain, histopathological analysis and host immune response of juvenile largemouth bass infected with LMBV-like were investigated. The results show that LMBV-like was highly pathogenic to juvenile fish, and the infected fish showed typical signs of acute haemorrhages and visceral enlargement. LMBV-like positive cells were found in the liver, spleen, kidney, gills, and intestinal tissue, and the virus content in spleen was the highest. Histopathological analysis showed different pathological changes in major tissues of diseased fish, mostly manifested as infiltration of inflammatory cell and histiocyte necrosis. In addition, humoral immune factors such as superoxide dismutase (SOD), catalase (CAT) and acid phosphatase (ACP) were used as serum indicators to evaluate the immune response of juvenile fish after infection. Quantitative real-time PCR (qRT-PCR) was used to evaluate the expression patterns of immune-related genes (CD40, IFN-γ, IgM, IL-1ß, IL-8, IL-12a, Mxd3, TGF-ß, and TNFα) in liver, spleen, and head kidney tissues. The results showed that immunological activity of the juvenile largemouth bass was significantly enhanced by LMBV-like infection. This research comprehensively systematically revealed the pathogenic characteristics of LMBV-like separated from juvenile largemouth bass and properties of the host's immune response caused by the virus infection, which providing a basis for further exploring the interaction between the virus and the host, and prevention and treatment of disease caused by Santee-Cooper ranavirus.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Animais , Virulência , Infecções por Vírus de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...